Plot.nnet

Medir la importancia de las variables en una red neuronal con R

Sigo a vueltas con esta gran web y hoy vamos a medir la importancia de las variables en una red neuronal. Al igual que sucede en un modelo de regresión los parámetros obtenidos pueden servirnos para determinar la importancia de una variable dentro del modelo. En el caso de una red neuronal los pesos de la red pueden ser utilizados para determinar cómo influye una variable en el modelo. Para ilustrar este tipo de tareas el gran @beckmw realizó esta entrada:

Representación de redes neuronales con R

En la última entrada realizamos un modelo de regresión con redes neuronales. Hoy quería mostraros como representar gráficamente la red neuronal creada en esa entrada. A la modelización con redes neuronales siempre se le ha achacado un comportamiento de “caja negra”, nosotros pasamos unas variables de entrada por una capa oculta y obtenemos una salida. No hay parámetros ni inferencia sobre los mismos, no sabemos lo que hace la red por dentro. En el caso concreto de R y continuando con la entrada anterior si hacemos summary(bestnn):