Quiero introduciros a los modelos de redes neuronales con R , mas concretamente quiero acercaros al módulo nnet de R. Tenemos extensa literatura al respecto de las redes neuronales, personalmente considero de lectura obligatoria este link (y prácticamente toda la documentación de este profesor) El paquete nnet nos permite crear redes neuronales de clasificación monocapa. Las redes neuronales clasifican mediante algoritmos o métodos de entrenamiento, en función de estos métodos podemos tener redes supervisadas y redes no supervisadas. Las primeras buscan un límite de decisión lineal a través de un entrenamiento. Las segundas parten de unos parámetros (pesos) fijos y no requieren entrenamiento porque realizan mecanismos de aprendizaje en función de experiencias anteriores. Como ya os he indicado hay mucha bibliografía al respecto y muchas entradas en Google que pueden ayudaros a conocer mejor estos modelos. En el caso que nos ocupa, y como viene siendo tónica habitual de la bitácora, vamos a darle una visión más práctica (tampoco soy yo el más adecuado para dar esa visión teórica). Trabajamos en una gran Caja española y nuestro responsable nos pide realizar una selección de clientes para un mailing. Tenemos que «colocar» planes de pensiones vitalicios inmediatos. A nosotros se nos ocurre realizar un modelo de redes neuronales para seleccionar aquellos clientes con una puntuación más alta y, por tanto, más propensos a comprar el producto.