Knn

Machine learnig. Análisis gráfico del funcionamiento de algunos algoritmos de clasificacion

Letra_O

De forma gráfica os voy a presentar algunas técnicas de clasificación supervisada de las más empleadas en Machine Learning y podremos ver cómo se comportan de forma gráfica en el plano. Como siempre prefiero ilustrarlo a entrar en temas teóricos y para esta tarea se me ha ocurrido pintar una letra O y comenzar a trabajar con Python, así de simple. Lo primero es tener los datos, evidentemente serán puntos aleatorios en el plano donde pintamos una variable dependiente con forma de O:

Resolución del juego de modelos con R

Hace mucho planteé un juego de identificación de modelos con R y ya se me había olvidado daros la solución. Pensando en el Grupo de Usuarios de R y en hacer algo parecido en una presentación recordé que había que solucionar el ejercicio. Lo primero es la creación de los datos, se me ocurrió una función sencilla y una nube de puntos alrededor de ella:

#Variable independiente
indep = runif(500,100,500)
#Función para crear la variable dependiente
foo = function(x){ mean(x)*(1-sin(-0.006042*x))
}
dep = sapply(indep,foo)

dep=dep+(runif(length(dep),-100,100))
datos = data.frame(cbind(indep,dep))
plot(datos)

juego_modelos1

KNN con SAS. Mejorando K-Means

Imagen de previsualización de YouTube

La clasificación por k vecinos más cercanos es EL MÉTODO supervisado no paramétrico. El KNN, si empleamos las siglas en inglés, clasifica las observaciones en función de su probabilidad de pertenecer a uno u otro grupo, en el video que encabeza la entrada queda muy bien explicado. El caso es que tenemos la posibilidad de realizar esta clasificación con SAS STAT y el PROC DISCRIM y me parece interesante dedicarle unas líneas. Hace años ya hablamos de segmentación con SAS y vamos a emplear los mismos datos para ilustrar esta entrada. Primero generamos un conjunto de datos con datos simulados de 3 esferas que clasificamos en 3 grupos:

Juego de modelos de regresión con R

Rplot

Os propongo un juego con R. El juego parte de unos datos aleatorios que he generado con R (los que veis arriba) que dividimos en entrenamiento y test. Sobre el conjunto de datos de entrenamiento he realizado varios modelos y valoro las predicciones gráficamente sobre los datos de test. El juego consiste en asociar cada resultado gráfico de test a cada código de R correspondiente y justificar brevemente la respuesta.