Modelos

Preparar nuestros datos para sklearn. Pasar de string a número

Cuando trabajamos con python y sklearn necesitamos que todos los datos que vamos a modelizar sean númericos, si tenemos variables carácter necesitamos previamente transformarlas a números. La forma más rápida para realizar esta tarea es emplear preprocesing de sklearn:

import pandas as pd
dias = {'dia': ['lunes','martes','viernes','miercoles','jueves','martes','miercoles','jueves','lunes']}
dias = pd.DataFrame(dias)
dias

Creamos un data frame a partir de una diccionario que se compone de los días de la semana ahora vamos a codificar las etiquetas con el LabelEncoder de sklearn:

Machine learnig. Análisis gráfico del funcionamiento de algunos algoritmos de clasificacion

Letra_O

De forma gráfica os voy a presentar algunas técnicas de clasificación supervisada de las más empleadas en Machine Learning y podremos ver cómo se comportan de forma gráfica en el plano. Como siempre prefiero ilustrarlo a entrar en temas teóricos y para esta tarea se me ha ocurrido pintar una letra O y comenzar a trabajar con Python, así de simple. Lo primero es tener los datos, evidentemente serán puntos aleatorios en el plano donde pintamos una variable dependiente con forma de O:

Ajuste de splines con R

spline_R1

El ajuste por polinomios, el ajuste por spline, es una técnica imprescindible dentro de análisis actuarial. Como siempre la parte matemática y la parte debida al puro azar pueden arrojar discrepancias. ¿Dónde son mayores estas discrepancias cuando usamos métodos estadísticos clásicos? Donde siempre, donde tenemos pocos datos, el comportamiento errático que tiene una tendencia y que habitualmente achacamos a la falta de información los actuarios gustan de corregirlo con ajuste por cúbicas, aunque es mejor emplear ajuste por polinomios ya que no tienen que ser necesariamente polinomios de grado 3. En mi caso particular tengo un Excel que no puedo poner a vuestra disposición porque no lo hice yo, creo que lo hizo alguna divinidad egipcia y desde entonces circula por el mundo la función cubic_spline. Hoy quiero aprovechar el blog no solo para sugeriros como realizar splines con R, además quería pedir ayuda para crear una herramienta en shiny que permita realizar este ajuste que voy a mostraros a continuación.

El parámetro gamma, el coste, la complejidad de un SVM

letra_o_svm_r

Cuando clasificamos datos con SVM es necesario fijar un margen de separación entre observaciones, si no fijamos este margen nuestro modelo sería tan bueno tan bueno que sólo serviría para esos datos, estaría sobrestimando y eso es malo. El coste C y el gamma son los dos parámetros con los que contamos en los SVM. El parámetro C es el peso que le

damos a cada observación a la hora de clasificar un mayor coste implicaría un mayor peso de una observación y el SVM sería más estricto (este link aclara mejor las cosas). Si tuvieramos un modelo que clasificara observaciones en el plano como una letra O podemos ver como se modifica la estimación en esta secuencia en la que se ha modificado el parámetro C:

Como salva la linealidad una red neuronal

En los últimos tiempos estoy empeñado en usar redes neuronales para la tarificación en seguros. Históricamente la tarificación de seguros, el pricing, se ha basado en modelos lineales generalizados GLM (sus siglas en inglés) porque su estructura es sencilla, se interpreta bien y no olvidemos que el sector asegurador está regulado y es necesario elaborar una nota detallada de cómo se articula una tarifa y el GLM nos ofrece una estructura multiplicativa que se comprende y con la que los reguladores se sienten muy cómodos. Sin embargo, una red neuronal es el paradigma de «caja negra», ¿cómo podemos saber que hace esa caja negra? Estoy trabajando en ello, la descripción del funcionamiento de las ponderaciones de una red está muy arriba en la lista de mis tareas pendientes.

Qué pasa si uso una regresión de poisson en vez de una regresión logística

Para un tema de mi trabajo voy a utilizar una regresión de poisson en vez de una regresión logística, el evento es si o no y no tiene nada que ver el tiempo, ni se puede contabilizar como un número, pero a efectos prácticos es mejor para mi usar una regresión de poisson. Entonces, ¿qué pasa si hago una poisson en vez de binomial? Como siempre si mi n es muy grande hay relación entre ambas distribuciones. Pero yo quiero saber si me puede clasificar mis registros igual una regresión de poisson y una binomial y se me ha ocurrido hacer un ejercicio teórico muy simple.

Resolución del juego de modelos con R

Hace mucho planteé un juego de identificación de modelos con R y ya se me había olvidado daros la solución. Pensando en el Grupo de Usuarios de R y en hacer algo parecido en una presentación recordé que había que solucionar el ejercicio. Lo primero es la creación de los datos, se me ocurrió una función sencilla y una nube de puntos alrededor de ella:

#Variable independiente
indep = runif(500,100,500)
#Función para crear la variable dependiente
foo = function(x){ mean(x)*(1-sin(-0.006042*x))
}
dep = sapply(indep,foo)

dep=dep+(runif(length(dep),-100,100))
datos = data.frame(cbind(indep,dep))
plot(datos)

juego_modelos1

KNN con SAS. Mejorando K-Means

Imagen de previsualización de YouTube

La clasificación por k vecinos más cercanos es EL MÉTODO supervisado no paramétrico. El KNN, si empleamos las siglas en inglés, clasifica las observaciones en función de su probabilidad de pertenecer a uno u otro grupo, en el video que encabeza la entrada queda muy bien explicado. El caso es que tenemos la posibilidad de realizar esta clasificación con SAS STAT y el PROC DISCRIM y me parece interesante dedicarle unas líneas. Hace años ya hablamos de segmentación con SAS y vamos a emplear los mismos datos para ilustrar esta entrada. Primero generamos un conjunto de datos con datos simulados de 3 esferas que clasificamos en 3 grupos:

Valor atípico o pocos registros. Animación con R

outlier¿Cómo influye un solo punto en una recta de regresión? Evidentemente cuanto menos observaciones tengo más puede «descolocar» la recta de regresión. Sin embargo, cuantos más puntos tengo más complicado es encontrar ese punto con una recta de regresión, sin analizar los residuos podríamos hasta pasarlo por alto, aunque puede ser que nos interese ese punto. El código de R que genera la animación es:

library(animation)
saveGIF(
for (i in c(100,50,25,10,5,1)){
x <- seq(-500,500, by = i )
y=sin(x)+x/100
y[10]=y[10]+10
plot (y,x,main=paste(«Regresión lineal con «,1000/i,» observaciones»))
reg <- lm(y~x)
points( fitted.values(reg),x, type=»l», col=»red», lwd=2)},
interval = .85, ,movie.name=»/Users/raulvaquerizo/Desktop/R/animaciones/outlier.gif»)

Interpretación de los parámetros de un modelo GLM

Muchos estudiantes terminarán trabajando con GLM que siguen buscando relaciones lineales en multitud de organizaciones a lo largo del planeta. Y hoy quería ayudar a esos estudiantes a interpretar los parámetros resultantes de un GLM , más concretamente los resultados de un PROC GENMOD de SAS aunque lo que vaya a contar ahora se puede extrapolar a otras salidas de SAS o R. En la línea de siempre no entro en aspectos teóricos y os remito a los apuntes del profesor Juan Miguel Marín. Con un GLM al final lo que buscamos (como siempre) es distinguir lo que es aleatorio de lo que es debido al azar a través de relaciones lineales de un modo similar a como lo hace una regresión lineal, sin embargo los GLM nos permiten que nuestra variable dependiente no sólo siga una distribución normal, puede seguir otras distribuciones como Gamma, Poisson o Binomial. Además un GLM puede trabajar indistintamente con variables categóricas y numéricas pero yo recomiendo trabajar siempre con variables categóricas y en la práctica cuando realizamos un modelo de esta tipo siempre realizaremos agrupaciones de variables numéricas. Si disponemos de variables agrupadas, de factores, los parámetros de los modelos nos servirán para saber como se comporta nuestra variable dependiente a lo largo de cada nivel del factor.

Truco para EMB Emblem. Cambiar el nivel base de un factor

Un buen truco que me han descubierto hoy para los usuarios de EMB Emblem, como cambiar el nivel base de un factor de datos sin necesidad de pasar por los datos (habitualmente SAS) o sin hacerlo a posteriori (habitualmente Excel y lo que hacía el ahora escribiente). Cuando se generan los datos se genera el fichero binario *.BID y el fichero que se emplea para leer ese fichero *.FAC; para alterar el nivel base debemos abrir este archivo *.FAC con un block de notas o cualquier editor de texto plano. Al abrirlo tendremos lo siguiente:

Juego de modelos de regresión con R

Rplot

Os propongo un juego con R. El juego parte de unos datos aleatorios que he generado con R (los que veis arriba) que dividimos en entrenamiento y test. Sobre el conjunto de datos de entrenamiento he realizado varios modelos y valoro las predicciones gráficamente sobre los datos de test. El juego consiste en asociar cada resultado gráfico de test a cada código de R correspondiente y justificar brevemente la respuesta.

Medir la importancia de las variables en una red neuronal con R

Sigo a vueltas con esta gran web y hoy vamos a medir la importancia de las variables en una red neuronal. Al igual que sucede en un modelo de regresión los parámetros obtenidos pueden servirnos para determinar la importancia de una variable dentro del modelo. En el caso de una red neuronal los pesos de la red pueden ser utilizados para determinar cómo influye una variable en el modelo. Para ilustrar este tipo de tareas el gran @beckmw realizó esta entrada: