Machine Learning

Crear una RESTful API con R con plumber

Podéis buscar info en la web acerca de lo que es una REST y una RESTful pero el objetivo de este trabajo es la creación de una API para «escorear» unos datos a partir de un modelo que hemos creado en R. Vamos a hacer lo más sencillo, un modelo de regresión lineal creado por R será guardado y una API con datos podrá llamar a este modelo mediante un cliente RESTful para obtener una predicción. Esta será la primera de una serie de entradas que le voy a dedicar a Carlos, un antiguo compañero mío y que me ha enseñado a desaprender y el primer guiño a Carlos será abandonar mi subversion local para conectar mi RStudio con GitHub, todo el trabajo que voy desarrollando lo tenéis en https://github.com/analisisydecision/Modelo1. Si echáis un vistazo al repositorio ya os podéis imaginar hacia donde irán encaminadas esta serie de entradas.

Truco Python. Seleccionar o eliminar variables de un data frame en base a un prefijo, sufijo o si contienen un caracter

A la hora de seleccionar las características de un data frame es posible que nos encontremos con la necesidad de seleccionar o eliminar características del data frame y que el nombre de esas características tenga un determinado patrón. Esta labor la podemos realizar mediante selección de elementos en listas, en esta entrada del blog vamos a tener 3 tipos de selecciones:

1. Seleccionar o eliminar aquellas variables que empiezan por un determinado prefijo
2. Seleccionar o eliminar aquellas variables que contienen una cadena de caracteres
3. Seleccionar o eliminar aquellas variables que finalizan con un sufijo

Notebook para empezar (y probar) en spark y scala

No debo enseñar Spark a nadie, no soy ni un usuario avanzado, ni le veo mucho recorrido. Sin embargo tengo que hacer diversos procesos con dataframes en spark y realizar modelos con MLlib y tengo que «perder tiempo» probando cosas, necesitaba un entorno sencillo en casa. En un primer momento exploré máquinas virtuales y alguna sandbox. Ninguna me convencía y le pedí a un compañero mío, Juanvi, que sabe mucho que me montara un entorno con un notebook de spark para poder jugar con scala y MLlib de modo sencillo. En vez de montarme el entorno en 20 minutos me escribió un correo con 3 direcciones que me están siendo de mucha utilidad y quería compartirlas con vosotros.

Machine learning. Elegir el mejor Gradient Boost de forma iterativa con GridSearchCV

Carlos [aka «el tete»] me está enseñando python y una de las cosas que me ha enseñado es seleccionar de forma iterativa el mejor modelo con GridSearchCV y por si fuera poco vamos a emplear el método de clasificación «gradient boosting» para que no caiga en desuso sobre todo porque es una técnica que, bajo mi punto de vista, ofrece modelos muy estables. El ejemplo para ilustrar el proceso ya es conocido ya que vamos a estimar la letra O, mi talento no da para mucho más. Recordamos los primeros pasos:

Machine learnig. Análisis gráfico del funcionamiento de algunos algoritmos de clasificacion

Letra_O

De forma gráfica os voy a presentar algunas técnicas de clasificación supervisada de las más empleadas en Machine Learning y podremos ver cómo se comportan de forma gráfica en el plano. Como siempre prefiero ilustrarlo a entrar en temas teóricos y para esta tarea se me ha ocurrido pintar una letra O y comenzar a trabajar con Python, así de simple. Lo primero es tener los datos, evidentemente serán puntos aleatorios en el plano donde pintamos una variable dependiente con forma de O: