Regresión ridge o regresión contraída con R
Por lo visto no he estudiado lo suficiente. Tengo que redimirme y estudiar este verano determinadas técnicas avanzadas de predicción. Fundamentalmente tengo que trabajar con R y tener determinados conocimientos teóricos sobre estas técnicas. Así que he pensado que, a la vez que estudio yo, estudian todos mis lectores. Además es probable que genere debate.
En esta primera entrega vamos a tratar la regresión contraída o regresión ridge. En el blog ya hablamos del problema que suponía la multicolinealidad cuando tenemos este problema una de las posibles soluciones es la regresión contraída o regresión ridge. Como ya dijimos el modelo lineal se expresa como Y = X • Beta + Error la estimación de nuestros parámetros Beta por mínimos cuadrados ordinarios es Beta = inv(X’X) * X’Y cuando X’X no es invertible tenemos un problema. La regresión ridge plantea una solución a este problema con unos parámetros Beta_contraidos = inv(X’X + lambda*I) * X’Y si lambda es 0 estamos ante mínimos cuadrados ordinarios, en otro caso estamos ante un estimador sesgado de Beta. Este estimador sesgado es solución al problema de mínimos cuadrados penalizados y lo que hace es contraer los Betas en torno a 0. En resumen, metemos sesgo pero reducimos varianza.