Consultoría

Gráficos de calendarios con series temporales

Cuando se realizan gráficos de series temporales se emplean gráficos de líneas donde el eje X contiene la fecha y el eje Y contiene el valor a representar. Hoy quiero traer al blog otra forma de representar series temporales, los gráficos de calendario y su realización con R. Para ilustrar el ejemplo vamos a emplear las cotizaciones históricas del índice bursatil IBEX35:

require(quantmod)
require(ggplot2)
require(reshape2)
require(dplyr)
library(lubridate)

# Obtenemos las cotizaciones del IBEX 35 desde 2010
getSymbols('^IBEX', from = '2010-01-01')

# data frame de trabajo
df<-data.frame(date=index(IBEX),IBEX)

Mediante quantmod extraemos las cotizaciones del IBEX desde 2010 y creamos un data frame de trabajo que llamamos df. Vamos a realizar dos tipos de gráficos, un mapa de calor por años, meses, semanas y días y un calendario de un año puntual.

El análisis de supervivencia en R para segmentar el churn

El análisis de supervivencia es uno de los olvidados por el Machine Learning y la nueva forma de ver el oficio. A la regresión logística si la damos algo de recorrido porque aparece en scikit-learn (con sus cositas), sin embargo, el análisis de supervivencia no tiene ese cartel porque en el momento que trabajas con un gran número de variables estos modelos «empiezan a echar chispas». Sin embargo ofrecen una serie de gráficos y resultados que más allá de la estimación nos describen problemas y pueden servirnos para segmentar poblaciones en base a la duración hasta la ocurrencia de un evento.

Me rindo, es necesario trabajar en Agile

Imagen de previsualización de YouTube

«Agile sounds good» y representa todo eso que critico. Tenía compuesta y preparada una canción que versiona el «Me cago en el amor» de Tonino Carotone, «Me cago en el Agile» se llamaba. ¿Por qué este cambio de opinión tan radical? Porque no se trabaja de forma horizontal, se trabaja de forma vertical y cada uno hace la guerra por su cuenta. Me voy a mi terrenoAgile Analytics

Los parámetros del modelo GLM como relatividades, como recargos o descuentos

Los modelos GLM son muy empleados en el ámbito actuarial para la obtención de modelos de riesgo, estos modelos de riesgo son los elementos fundamentales en el cálculo de tarifas y qué es una tarifa, imaginad el precio del seguro de vuestra vivienda, bueno pues es un cálculo en el que partiendo de un precio base se van añadiendo recargos y descuentos en función del tipo de riesgo que se quiera asegurar (recargos y descuentos en función de los metros cuadrados, de la ubicación de la vivienda de las calidades de construcción….). Esta es una visión muy simplista porque al final se tienen múltiples garantías y es necesaria la combinación de garantías, pero se puede entender de ese modo, un precio base al que recargamos o descontamos precio. Estos recargos y descuentos se denominan frecuentemente relatividades y hoy quiero acercaros a la obtención de esas relatividades y como un modelo GLM se transforma en el precio de un seguro.

Los principales problemas de los españoles. Animaciones con R y gganimate

La realización de gráficos animados con R, gganimate y ggplot2 es algo que quiero empezar a trabajar en mis visualizaciones de datos, una buena forma de llamar la atención sobre nuestros gráficos. Para ilustrar el ejemplo he recogido los datos que publica mensualmente el CIS con las 3 principales preocupaciones de los españoles que podéis encontrar en este enlace, por cierto, este enlace tiene toda la pinta de ser una salida en SAS, no me parece muy apropiado pero no diré nada porque imagino que serán lectores del blog (ya podíais hacer una salida más acorde con los tiempos). El caso es que la primera parte de nuestro trabajo será el «scrapeado» de la web. Scrapear verbo regular de la primera conjugación:

Crear archivo csv desde SAS con Python

Con la librería sas7bdat de Python podemos leer archivos SAS y crear directamente un data frame, es la mejor librería para hacerlo, si la tabla SAS que deseáis leer está comprimida (compress=yes) con pandas no podréis hacerlo. Pero tengo que agradecer a mi compañero Juan que me haya descubierto la función convert_file para pasar directamente el archivo SAS a csv, es más eficiente y parece que consume menos recursos del equipo. La sintaxis es muy sencilla:

Diagramas de Voronoi con spatial de python

En breve «mis cachorros», como llamo a un grupo de los mejores Data Scientist de Europa (de los que tengo que hablar algún día) se van a enfrentar a un problema que probablemente tengan que resolver con análisis geométricos muy complejos. Para despertarles la curiosidad (sé que me leen) hoy traigo al blog una entrada que nos aproxima al método de interpolación geométrica más sencillo, al diagrama de Voronoi. Con spatial de scipy podemos trabajar con estos diagramas:

¿Puede la información de Twitter servir para calcular el precio de tu seguro?

rvaquerizo

Debemos de ir introduciendo el concepto de Social Pricing en el sector asegurador, si recordamos el año pasado Admirall y Facebook tuvieron un tira y afloja por el uso de la información de Facebook para el ajuste de primas de riesgo. Facebook alegaba a la sección 3.15 de su privacidad para no permitir emplear esta información a Admirall. Probablemente es un tema más económico. El caso es que tanto Facebook, como Instagram, como Twitter, como LinkedIn, como xVideos,… tienen información muy interesante acerca de nosotros, información que se puede emplear para el cálculo de primas en el sector asegurador (por ejemplo). No voy a decir como hacer esto, este blog no es el lugar, el que quiera conocer mis ideas que se ponga en contacto conmigo. Yo soy alguien “público”, no tengo problema en dejar mis redes sociales abiertas y este caso me sirve de ejemplo para analizar que dice Twitter de mí y también sirve de ejemplo para refrescar el manejo de información con Twitter con #rstats. Esta entrada es una combinación de entradas anteriores de esta bitácora así que recordemos como empezábamos a hacer scrapping de Twitter:

Ejemplo de web scraping con R. La formación de los diputados del Congreso

No sabía si realizar esta entrada sobre web scraping con R o con python. He obtado por la primera opción porque en un principio era una entrada para ilustrar un ejemplo de web scraping y al final se me están ocurriendo muchas ideas sobre el análisis de la web de Congreso de los diputados y he preferido hacerla con R porque tengo una mayor soltura para hacer distintos análisis. Quería empezar por estudiar la formación que tienen nuestros 350 diputados, para ello se me ocurrió descargarme las líneas que tienen en su ficha de diputado y crear un data frame con los datos personales referentes a su formación. Si entráis en la ficha de cualquier diputado (http://www.congreso.es/portal/page/portal/Congreso/Congreso/Diputados/BusqForm?_piref73_1333155_73_1333154_1333154.next_page=/wc/fichaDiputado?idDiputado=171&idLegislatura=12) veréis que les han dejado un pequeño texto donde describen su hoja de vida. La verdad es que cada uno a escrito lo que le ha parecido pero algún patrón se puede encontrar. Para ilustrar el ejemplo he preferido usar la librería rvest porque me ha parecido una sintaxis más sencilla. Yo no soy un buen programador, incluso soy un poco desastre, hasta guarrete programando y con rvest creo que el código es bastante claro.

Como obtener los centroides de municipios con SAS. Mapas con SGPLOT

mapa_municipios_sas2

Un amigo y lector del blog me ha pedido un mapa de códigos postales donde poder identificar los centroides para andar calculando distancias a otros puntos. Yo no tengo un mapa de España por códigos postales para poder usar con fines comerciales, pero si cuento en el blog como poder obtenerlo bajo ciertas condiciones. Lo que si puedo contar a Juan es como hacer un mapa por municipios con SAS, aunque ya he hablado de ello hay ciertos aspectos que pueden ser interesantes. y todo empieza donde siempre http://www.gadm.org/country la web donde tenemos los mapas «libres» por países, seleccionáis Spain y el formato shapefile una vez descargados los mapas en vuestros equipos empezamos con el trabajo en SAS:

El parámetro gamma, el coste, la complejidad de un SVM

letra_o_svm_r

Cuando clasificamos datos con SVM es necesario fijar un margen de separación entre observaciones, si no fijamos este margen nuestro modelo sería tan bueno tan bueno que sólo serviría para esos datos, estaría sobrestimando y eso es malo. El coste C y el gamma son los dos parámetros con los que contamos en los SVM. El parámetro C es el peso que le

damos a cada observación a la hora de clasificar un mayor coste implicaría un mayor peso de una observación y el SVM sería más estricto (este link aclara mejor las cosas). Si tuvieramos un modelo que clasificara observaciones en el plano como una letra O podemos ver como se modifica la estimación en esta secuencia en la que se ha modificado el parámetro C:

Trucos Excel. Mapa de Colombia por departamentos

mapa-colombia-excel

El mapa Excel de Colombia por departamentos era tarea pendiente, el modo en el que se ha hecho es el habitual y por ello lo primero que hay que hacer es citar al usuario de Wikipedia Shadowxfox – Trabajo propio, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=44930910 es importante comentar que seleccioné este por el tamaño, en Excel se ve bien poniendo el zoom al 35% (¡!) y es que cada vez veo menos. El mapa puede representar 5 grupos y estos grupos se pondrán en la columna C donde podemos cruzar por nombre. Comentar que falta el departamento de las islas de San Andrés y Providencia porque no sabía muy bien como ubicarlas y como representarlas en el mapa.

Como salva la linealidad una red neuronal

En los últimos tiempos estoy empeñado en usar redes neuronales para la tarificación en seguros. Históricamente la tarificación de seguros, el pricing, se ha basado en modelos lineales generalizados GLM (sus siglas en inglés) porque su estructura es sencilla, se interpreta bien y no olvidemos que el sector asegurador está regulado y es necesario elaborar una nota detallada de cómo se articula una tarifa y el GLM nos ofrece una estructura multiplicativa que se comprende y con la que los reguladores se sienten muy cómodos. Sin embargo, una red neuronal es el paradigma de «caja negra», ¿cómo podemos saber que hace esa caja negra? Estoy trabajando en ello, la descripción del funcionamiento de las ponderaciones de una red está muy arriba en la lista de mis tareas pendientes.