El problema de la multicolinealidad, intuirlo y detectarlo
El modelo líneal se puede escribir de forma matricial como Y = X • Beta + Error. Donde Y es el vector con nuestra variable dependiente, X la matriz con las variables regresoras, Beta el vector de parámetros y el error esa parte aleatoria que tiene que tener todo modelo. La matriz con nuestras variables regresoras X ha de tener rango completo es decir, todas sus columnas tienen que ser linealmente independientes. Eso nos garantiza que a la hora de estimar por mínimos cuadrados ordinarios X’ X es invertible. Si no es invertible la estimación por mínimos cuadrados ordinarios “se vuelve inestable” ya que X’X =0 y 1/ X’X será muy complicado de calcular ya que los Beta son inversa(X’ X) •X’Y; por ello los resultados que arroja el modelo tienen una alta variabilidad. Cuando esto nos pasa tenemos colinealidad.