Python

Machine learning. Elegir el mejor Gradient Boost de forma iterativa con GridSearchCV

Carlos [aka «el tete»] me está enseñando python y una de las cosas que me ha enseñado es seleccionar de forma iterativa el mejor modelo con GridSearchCV y por si fuera poco vamos a emplear el método de clasificación «gradient boosting» para que no caiga en desuso sobre todo porque es una técnica que, bajo mi punto de vista, ofrece modelos muy estables. El ejemplo para ilustrar el proceso ya es conocido ya que vamos a estimar la letra O, mi talento no da para mucho más. Recordamos los primeros pasos:

Truco Python. Largo de una variable numérica

Hoy he tenido que determinar la longitud de una variable numérica de un data frame en python y tras pegarme unos minutos con len he encontrado la fórmula con str.len() el ejemplo es:

df['largo_numero'] = df['variable_numerica'].astype(str).str.len()

Me ha parecido interesante traerlo.

Mosaic plot con python

Entrada análoga a otra realizada con R hace mucho tiempo empleando R, ahora realizo esta tarea con pytho. Estos gráficos van a ser necesarios para un fregado en el que ando metido ahora y como podéis ver es una tarea muy sencilla:

import pandas as pd
df = pd.read_csv('http://www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and_Actuarial_Studies/acst_docs/glms_for_insurance_data/data/claimslong.csv')

from statsmodels.graphics.mosaicplot import mosaic
mosaic(df, ['agecat', 'valuecat'])
show()

Y da como resultado:

mosaic_plot_python

Saludos.

¿Si hacemos modelos de riesgo con python?

Machine learnig. Análisis gráfico del funcionamiento de algunos algoritmos de clasificacion

Letra_O

De forma gráfica os voy a presentar algunas técnicas de clasificación supervisada de las más empleadas en Machine Learning y podremos ver cómo se comportan de forma gráfica en el plano. Como siempre prefiero ilustrarlo a entrar en temas teóricos y para esta tarea se me ha ocurrido pintar una letra O y comenzar a trabajar con Python, así de simple. Lo primero es tener los datos, evidentemente serán puntos aleatorios en el plano donde pintamos una variable dependiente con forma de O: